Northwind Automatic Card Dealer ACD-2

Service Manual
Overview
The Northwind Automatic Card Dealer (ACD) is a state of the art card distribution

device suitable to a number of different games. Its dealing behavior is
customizable to the end user to fit any possible needs.

Architecture

The ACD consists of 2 or more connected Card Handling (CH) units. The CH units
are each identical and customizable. Their behavior i1s described later in this
document.

Several models of ACD are available. By default they will randomly assign cards
to each of their output units. The ACD-2 consists of 3 CH units and is perfect
for 2-player games.

CHO
(Control)

CH1 | = CH2

Behavior

By default, all ACD models will assign an equal number of randomly selected cards
to all outputs.

Customizing Behavior

Each CH unit can be configured with microcode instructions. Each CH unit has a
series of registers and can handle a single card at a time:

Register Description

CVAL Returns the value of the current card held by this unit from 1 (Ace)
to 13 (King). Will return 0 if no card currently in this unit.
Read-only.

CVALB Returns the bounded value of the current card held by this unit from
1 (Ace) to 10 (10, Jack, Queen, King). Will return 0 if no card

currently in this unit. Read-only.

RO 8-bit signed general purpose register
R1
R2
R3
R4

)5 Output ports allowing a card to be sent to an adjacent unit. Not all
LEFT ports are connected on all units.

RIGHT
DOWN

Input and Output

There is an input queue of cards attached to each unit. ©Units can asynchronously
write to these queues, but all operations which read from the queue are blocking
if the queue is currently empty. The input queue for any given CH node is shared
between all other nodes capable of sending cards to that node. Any attempt to
write more cards to an input queue will block the writer until the gqueue has been
emptied.

Nodes can get rid of cards in two ways: First, nodes associated with an output
position (often a player) can add the current card to the dealing queue with the
KEEP instruction. Second, they may send cards to adjacent nodes with the SEND
instruction.

The adjacency of nodes is shown in their layout diagrams. For instance, in the
ACD-4, node Pl is adjacent to nodes P2 and P4.

The Control node is treated differently - it traditionally has the full deck as
its input queue, but it has no way to deal a card, and other nodes cannot SEND
cards to 1it.

Timing

All CH units are running in parallel. A shared clock advances all units one
instruction simultaneously (excepting units currently blocked waiting for input

or sending to a full queue). The concept of a blocked node is determined at the
start of each instruction. If a value is written to queue, the reader will not
unblock until the next clock cycle. If a value is removed from a full queue, the
writer will not unblock until the next cycle.

In the case of simultaneous writes or unblocking, the node of highest ID will be
allowed to act first. The control node is considered to have ID O.

Microcode Instructions

The following instructions are available for use in CH:

Instruction Syntax Description

READ READ Reads a new card from the
deck. Crashes if the
CARD register currently
has contents.

RRAND (Read random) RRAND Reads a random card from
the input queue. Crashes
if the CARD register
currently has contents.

KEEP KEEP Retains the card
currently in the CARD
register in the list of
cards eligible to be
dealt from this unit.
Crashes if no card
exists. The next time
the player associated
with this CH requests a
card, that card will be
provided to them. This
does NOT mean that the
card will be immediately
dealt in a game.

SEND SEND LEFT Sends the card currently
in the CARD register in
the given direction.
Crashes if no adjacent
node is connected in that
direction or if no card
is in the CARD register

ADD ADD RO SUIT R1 R1 = (RO + SUIT)
ADD RO 2 RO RO = RO + 2
SUB (Subtract) SUB RO SUIT R1 R1 = (RO - SUIT)

SUB RO 2 RO RO = RO - 2

NEG (Negate)

NEG RO

RO = 0 - RO

(Label)

FOO:

Creates a label for use
with jump instructions.
Labels must begin with a
capital letter and
consist of letters and
numbers only. Any
pattern of R followed by
numbers, any instruction
name or any register name
is reserved.

JMP (Jump)

JMP FOO

Jump to the instruction
at the label FOO

JE (Jump if Equal)

JE RO R1 FOO

Jump to FOO if RO = R1

JE RO 6 FOO

Jump to FOO if RO = 6

JNE (Jump if not equal)

JNZ RO R1 FOO

Jump to FOO if RO # R1

JNZ RO 7 FOO

Jump to FOO if RO # 7

JGT (Jump if greater than)

JGT RO R1 FOO

Jump to FOO if RO > R1

JGT RO 5 FOO

Jump to FOO if RO > 5

JGE (Jump if greater than
or equal)

JGE RO R1 FOO

[\

Jump to FOO if RO R1

JGE RO 4 FOO

[\
i

Jump to FOO if RO

JLT (Jump if less than)

JLT RO R1 FOO

Jump to FOO if RO < R1

JLT RO 3 FOO

Jump to FOO if RO < 3

JLE (Jump if less than or
equal)

JLE RO R1 FOO

IN

Jump to FOO if RO R1

JLE RO 2 FOO

IN

Jump to FOO if RO 2

NOP (No operation)

NOP

No operation (do nothing)

(comment)

This is a comment

Ignores all text on this
line

Testing

The ACD-2 unit allows you to step through its program instruction by instruction
to inspect state and debug. If a program successfully runs (or is stepped) to
completion, you will have the option to run a Validation pass against it.

Validation does a sanity check on the program with a series of inputs, ensuring
that:

® The player total is not always the same

® The dealer total is not always the same

® The dealer’s visible card is not always the same

Tips and Tricks

If the CH runs out of instructions it will crash. Remember to loop!

One common technique for dealing cards is the circular buffer. If you don’t want
to deal a card, pass it to another CHU. If you see it again, keep passing!

The stock coding for the ACD-2 unit is as follows:

Control:
START:
READ

SEND LEFT
READ

SEND RIGHT
JMP START

CH1/CH2:
START:
READ

KEEP

JMP START

Sample Programs

This program will send all odd cards to CH2 and all even cards to CHI1

Control:
LOOP:

READ

SEND LEFT
READ

SEND RIGHT
JMP LOOP

CH1:
LOOP:

READ
Store the card value
ADD CVAL 0 RO

Determine if the card is even or odd
MOD:

JLT RO 2 GOTMOD

SUB RO 2 RO

JMP MOD

GOTMOD:

Keep the card if it's even
JE RO 0 PRESERVE

SEND RIGHT

JMP LOOP

PRESERVE:
KEEP
JMP LOOP

CH2:

LOOP:

READ

Store the card value
ADD CVAL 0 RO

Determine if the card is even or odd
MOD:

JLT RO 2 GOTMOD

SUB RO 2 RO

JMP MOD

GOTMOD:

Keep the card if it's odd
JE RO 1 PRESERVE

SEND LEFT

JMP LOOP

PRESERVE:
KEEP
JMP LOOP

